Вычислить сумму ряда с точностью α. Знакочередующийся ряд. Признак Лейбница, ряд Лейбница.
Для приближённого вычисления суммы знакочередующегося ряда используется признак Лейбница, а точнее следствие из этого признака.
Ряд называется знакочередующимся, если его положительные члены чередуются с отрицательными членами. Знакочередующийся ряд называется рядом Лейбница, если каждый последующий член по абсолютной величине не превосходит или меньше предыдущего члена, и при этом предел последовательности абсолютных величин членов ряда равен нулю.
Признак Лейбница утверждает, что такой ряд, то есть ряд Лейбница, сходится и при этом его сумма не превосходит по абсолютной величине первого члена ряда. Из этого признака непосредственно вытекает следствие, согласно которому, остаток ряда не превосходит по абсолютной величине первого отброшенного члена. А это, в свою очередь, означает, что для вычисления суммы ряда Лейбница с заданной точностью, нужно найти первый член, который меньше этой заданной точности и отбросить его и все последующие члены ряда, а те члены, которые остались, то есть которые больше, ч
1 view
177
53
2 months ago 00:39:06 1
Кто стоял за одним из самых масштабных преступлений в истории Советского Союза
2 months ago 00:10:28 1
ЛЮДИ - ПРОГРАММЫ. Как легко вычислить БОТА в вашем окружении?