deep-learning-with-pytorch-for-medical-image-analysis-0
\
0:00 COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!
6:41 Installation and Environment Setup
24:30 Course Curriculum
Course NumPy\
25:49 Introduction to NumPy
28:04 NumPy Arrays
38:50 NumPy Arrays Part Two
47:00 NumPy Index Selection
59:17 NumPy Operations
1:06:03 NumPy Exercises
1:07:21 NumPy Exercise - Solutions
Learning Concepts Overview\
1:14:27 What is Machine Learning
1:18:07 Supervised Learning
1:26:28 Overfitting
1:34:27 Evaluating Performance - Classification Error Metrics
1:51:05 Evaluating Performance - Regression Error Metrics
Basics\
1:56:42 PyTorch Basics Introduction
2:00:03 Tensor Basics
2:08:13 Tensor Basics-Part Two
2:23:26 Tensor Operations
2:36:56 Tensor Operations-Part Two
2:43:23 PyTorch Basics - Exercise
2:45:56 PyTorch Basics - Exercise Solutions
Neural Networks\
2:51:18 Introduction to CNNs
2:52:22 Understanding the MNIST data set
2:55:47 ANN with MNIST - Part One - Data
3:15:09 ANN with MNIST - Part Two - Creating the Network
3:25:44 ANN with MNIST - Part Three - Training
3:41:13 ANN with MNIST - Part Four - Evaluation
3:50:28 Image Filters and Kernels
4:02:04 Convolutional Layers
4:16:05 Pooling Layers
4:22:52 MNIST Data Revisited
4:25:04 MNIST with CNN - Code Along - Part One
4:43:26 MNIST with CNN - Code Along - Part Two
5:01:45 MNIST with CNN - Code Along - Part Three
5:10:42 Why do we need GPUs
5:23:49 Using GPUs for PyTorch
Imaging-A short Introduction\
5:41:30 Introduction
5:46:47 Overview X-RAY
5:49:57 Overview CT
5:54:01 Overview MRI
5:57:20 Overview PET
Formats in Medical Imaging\
6:00:24 Introduction
6:02:20 DICOM
6:07:38 DICOM-in-Python
6:23:24 NIfTI
6:26:03 NIfTI-in-Python
6:35:22 Preprocessing
6:50:07 Preprocessing-in-Python-Part-1
7:03:22 Preprocessing-in-Python-Part-2
\
7:15:32 Introduction
7:28:17 Preprocessing
7:43:38 Train-01-Data-Loading
7:57:17 Train-02-Model-Creation
8:09:41 Train-03-Trainer
8:13:57 Train-04-Evaluation
8:23:00 Interpretability
\
8:40:41 01-Introduction
8:46:12 02-Preprocessing
8:59:28 03-Dataset-Part-1
9:11:32 04-Dataset-Part-2
9:16:34 Train-01-Data-Loading
9:21:11 Train-02-Model-Creation
9:36:31 Train-03-Evaluation
\
9:43:24 01-Introduction
9:52:07 Preprocessing-01-Visualization
10:01:04 Preprocessing-02-Processing
10:09:05 Dataset-01-Dataset-Creation
10:17:52 Dataset-02-Dataset-Validation
10:21:53 UNet
10:36:11 Train-01-Data-Loading-and-Loss
10:42:06 Train-02-Model-Creation
10:51:37 Train-03-Evaluation
Lung Tumor Segmentation\
11:01:04 Introduction
11:05:59 Overview
11:07:09 Oversampling
11:13:00 Discussion
Liver and Liver Tumor Segmentation\
11:18:18 Introduction
11:29:37 Data-Visualization
11:34:44 Model
11:39:09 Train-01-TorchIO-Dataset
11:50:43 Train-02-Model-Creation
11:56:58 Train-03-Evaluation