Paper:
Experiments are out! :
Abstract:
In this paper, we propose a novel framework on force-and-moment-based Model Predictive Control (MPC) for dynamic legged robots. In specific, we present a formulation of MPC designed for 10 degree-of-freedom (DoF) bipedal robots using a simplified rigid body dynamics with input forces and moments. This MPC controller will calculate the optimal inputs applied to the robot, including 3-D forces and 2-D moments at each foot. These desired inputs will then be generated by mapping these forces and moments to motor torques of 5 actuators on each leg. We evaluate our proposed control design on physical simulation of a 10 degree-of-freedom (DoF) bipedal robot. The robot can achieve fast walking speed up to 1.6 m/s on rough terrain, with accurate velocity tracking. With the same control framework, our proposed approach can achieve a wide range of dynamic motions including walking, hopping, and running using the same set of control parameters.
1 view
199
36
2 days ago 00:31:06 1
Whistleblow Uncovers Covid Scam
1 month ago 00:05:37 1
LA CRISIS DE OPIOIDES EN ESTADOS UNIDOS: Kensington, Purdue Pharma, & Afganistán
1 month ago 00:01:00 1
MOTIVATIONAL : Best VLSI Training in INDIA | 100%Job Assistance | Job Oriented Advanced VLSI Courses
1 month ago 00:05:01 1
Как скачать бесплатно пакет Microsoft Office 2021 ProPlus с ОФИЦИАЛЬНОГО САЙТА или Office365🔥