Настало время написать свою собственную нейронную сеть и алгоритм её обучения. С нуля. На чистом питоне. Чтобы раз и навсегда разобраться, как именно всё это работает.
В этом видео мы будем использовать информацию о том, как устроена простая полносвязная нейросеть (многослойный перцептрон), как обучить нейронную сеть с помощью стохастического градиентного спуска, как написать на Python инференс для нейросети и как вычислить градиент с помощью обратного распространения ошибки. Для ознакомления с этими темами рекомендую посмотреть предыдущие видео:
1. Знакомство с нейронными сетями:
2. Как обучить нейронную сеть:
3. Инференс нейронной сети на Python:
4. Обратное распространение ошибки:
Обучать будем модель для классификации цветка ириса (по четырем скалярным признакам). В качестве обучающей выборки будем использовать набор данных — Ирисы Фишера.
После создания первого минимального цикла обучения я кратко покажу, как можно улучшить алгоритм обучения за счёт различных фишек: как можно настраивать гиперпараметры, как можно менять начальную инициализацию весов нейросети, и т.д. А также покажу как реализовать батч (batch) — подход, позволяющий стабилизировать стохастический градиентный спуск.
Код из видео:
Меня зовут Дмитрий Коробченко, и на моём канале будет много чего интересного, так что подписывайтесь и нажимайте на колокольчик, чтобы ничего не пропустить:
#Нейросети #ГлубокоеОбучение #ДмитрийКоробченко #НейронныеСети #МашинноеОбучение #ИскусственныйИнтеллект #ОбучениеНейросети #ГрадиентныйСпуск #Python #Numpy
16 views
1
0
1 day ago 00:05:37 0
REACTION to Racist Mario! | TOTAL WTF MODE!!! |
1 day ago 00:18:36 0
Murder | THE DARK SIDE! | Gmod Gameplay w/ Joost Kivits, Bulltramaxx & Jerejoe