Regression Features and Labels - Practical Machine Learning Tutorial with Python p.3
We’ll be using the numpy module to convert data to numpy arrays, which is what Scikit-learn wants. We will talk more on preprocessing and cross_validation when we get to them in the code, but preprocessing is the module used to do some cleaning/scaling of data prior to machine learning, and cross_ alidation is used in the testing stages. Finally, we’re also importing the LinearRegression algorithm as well as svm from Scikit-learn, which we’ll be using as our machine learning algorithms to demonstrate results.
At this point, we’ve got data that we think is useful. How does the actual machine learning thing work? With supervised learning, you have features and labels. The features are the descriptive attributes, and the label is what you’re attempting to predict or forecast. Another common example with regression might be to try to predict the dollar value of an insurance policy premium for someone. The company may collect your age, past driving infractions, public criminal record, and your credit score for ex
23 views
255
59
8 months ago 01:46:49 1
Ce soir le 26102024 à 20h30 L’importance de l’absolu relatif.
8 months ago 00:37:03 1
454-ACTUALITÉ: DISCUSSION AVEC UN EXTRATERRESTRE Sa vision de la Terre et des humains -Investigation
8 months ago 00:51:23 1
53- ENQUETE: ZARATHOUSTRA - Origine et Avenir de l’humanite - Hypnose Régressive Matthieu Monade
8 months ago 00:00:00 1
Ce soir le 23102024 à 20h15 La somme de toutes les réalités.
8 months ago 01:58:19 1
Ce soir le 19102024 à 20h30 Contact avec les Exilés galactiques, conflit en préparation.
8 months ago 00:20:13 1
453-ENQUÊTE: EST-CE QUE NOTRE FUTUR PEUT MODIFIER NOTRE PRÉSENT? - Fonctionnement quantique du temps