UCI AI/ML Seminar Series
Ruiqi Gao
Research Scientist
Google Brain
Advanced training of energy-based models
Energy-based models (EBMs) are an appealing class of probabilistic models, which can be viewed as generative versions of discriminators, yet can be learned from unlabeled data. Despite a number of desirable properties, two challenges remain for training EBMs on high-dimensional datasets. First, learning EBMs by maximum likelihood requires Markov Chain Monte Carlo (MCMC) to generate samples from the model, which can be extremely expensive. Second, the energy potentials learned with non-convergent MCMC can be highly biased, making it difficult to evaluate the learned energy potentials or apply the learned models to downstream tasks.
In this talk, I will present two algorithms to tackle the challenges of training EBMs. (1) Diffusion Recovery Likelihood, where we tractably learn and sample from a sequence of EBMs trained on increasingly noisy ve
16 views
45
11
4 months ago 01:56:18 4
«Недостатки и распределение рисков в аренде: в поисках баланса интересов сторон» лекция А.Карапетова
6 months ago 01:23:53 1
Прямой эфир «LLM в AI Talent Hub»
6 months ago 00:05:59 1
Куда мы пропадали? Новости, обещания и планы.
8 months ago 00:00:00 1
Человеко-машинный разум для проектирования и производства микросхем - Виктор Артюхов — Семинар AGI
10 months ago 01:06:13 1
Limitations of Stochastic Selection with Pairwise Independent Priors
11 months ago 01:00:50 1
[I’ML] ML System Design
1 year ago 01:55:29 50
FractalGPT - Захар Понимаш — Семинар AGI
1 year ago 00:28:41 1
Прикладное машинное обучение. Семинар 5. BERT.
1 year ago 00:49:05 1
High-Dimensional Prediction for Sequential Decision Making