Машинное обучение. Прогнозирование временных рядов. К.В. Воронцов, Школа анализа данных, Яндекс.
Прогнозирование временных рядов – это специальный случай задачи регрессии, в которой объекты выборки линейно упорядочены по времени. Обучающая выборка находится в прошлом, тестовая – в будущем. В простых задачах из области эконометрики поведение временного ряда складывается из медленно меняющегося тренда, сезонной квазипериодичности и различных календарных эффектов. В этих случаях неплохо работают адаптивные методы краткосрочного прогнозирования. Они основаны на рекуррентных формулах, которые выводятся методом наименьших квадратов. Если модель временного ряда не известна, а временных рядов много, используются методы адаптивной селекции и адаптивного комбинирования моделей. Их точности вполне хватает для решения многих практических задач, а неоспоримым преимуществом является вычислительная эффективность.
1 view
654
186
2 years ago 00:30:34 18
Машинное обучение
3 years ago 01:00:24 16
17. Машинное обучение ПМИ: машинное обучение на графах
4 years ago 01:10:42 34
Квантовое машинное обучение
4 years ago 01:13:56 17
Машинное обучение 8
4 years ago 01:09:15 14
Машинное обучение 15
5 years ago 00:52:49 23
Машинное обучение. Энтропия.
8 years ago 00:10:05 131
#тренды | Машинное обучение
3 years ago 02:33:23 16
Машинное обучение. Регрессия
4 years ago 01:21:22 10
Машинное обучение 10
4 years ago 01:33:21 10
Машинное обучение 12
4 years ago 00:52:30 14
Машинное обучение в больших корпорациях
6 years ago 00:57:59 26
Занятие 1 | Машинное обучение
2 years ago 00:11:08 14
#13. Логистическая регрессия. Вероятностный взгляд на машинное обучение | Машинное обучение