100 Machine Learning tips and TRICKs to celebrate 🎉
This channel is now partnered with Youtube! 🎉
Celebrate with me and these 100 machine learning Tipps!
——————————————————————————————————————
Join my newsletter for more insights:
💌
——————————————————————————————————————
Missing Data
ConvNext 2020
The Illustrated Transformer
GANs
Cycle GANs
Numpy Einsum:
Imagenet to Imagenet
MissingNo
Pandas Profiler
Huber Loss:
——————————————————————————————————————
🎥 My Camera Gear
🎼 My Music
——————————————————————————————————————
⏱️ Timestamps
00:00 - Start
00:20 Learn about Shortcuts and Compression
00:31 Treat missing data correctly
00:50 Read the Convnext 2020 paper for CNNs
01:25 Let experts label your data
01:49 Learn about Transfomers
01:59 For regression don’t forget R²
02:15 GANs are easier to train than you think
02:32 Get to know your data
02:44 Split out your test set asap
03:01 Transfer learning is great
03:23 Go with the basics
03:37 Tune your hyperparameters
03:48 Use Cross-validation & Baseline Models
04:17 Use Data Augmentation
04:31 Use Explainable AI
04:48 Be careful with benchmark results
05:02 Put your papers on Arxiv
05:15 Cut through the noise
05:25 Publish Your Code
05:49 Talk to Domain Scientists
06:16 Survey the Literature
06:38 Use benchmarks
06:50 Check for Class Imbalances
07:02 Build Trust through communication
07:19 Build Benchmarks for Credibility
07:38 Why class imbalance is difficult
08:04 Use Pytorch lightning
08:14 Never upgrade CUDA
08:22 Train your models online
08:36 Don’t Overpromise Solutions
08:51 Overfit a small batch for debugging
09:03 Use Adam or SGD Optimizers
09:25 Set your gradients to None
09:37 Try Gradient clipping if you get NaNs
09:50 Fuse small operations
10:06 Reduce the batch size to replicate papers
10:16 Don’t mix BatchNorm and biases
10:26 Pin Pytorch memory & Check your weight decay
10:45 Use gradient accumulation
11:06 Careful with Softmax
11:32 Use Mixed Precision
11:42 Inspect bad data points
11:52 Build redundancy in your MLOps
12:01 Pytorch async data loading
12:17 Use the Classification Report
12:28 Keras Lambda Layers
12:38 Don’t use Random Forests for Feature Importances only
12:55 Use XGBoost and Neural Networks
13:05 Einsum is great!
13:25 Research Adjacent Fields
13:40 Hydra for Configs
13:54 MissingNo Library
14:04 Pandas Profiler
14:15 Paperswithcode
14:34 Try Unets
14:44 Use EarlyStopping
14:54 Set your Dropout right
15:04 Check out Profilers
15:14 Experience Replay
15:24 Use Schemas in production
15:34 Empty Pytorch and TF cache
15:44 Normalize your inputs
15:54 Use Robust Scalers
16:05 Find difficult to train samples
16:21 Arbitrary input sizes
16:34 Use GANs for real-world data
16:52 Set up Data pipelines
17:02 Use Confusion Matrixes & Find the maximum batch size
17:21 Use checkpoints on Colab
17:35 Learn the different model APIs
17:51 Debug with Tensorboard
18:01 Pre-allocate memory for dynamic tensors
18:13 Feature engineering
18:37 Random Forest can overvalue noisy features
18:48 Read the Docs
19:05 Ensemble models
19:15 Always think if a model should even be built
19:25 Remove correlated samples from training data
19:35 Dare move away from defaults
19:45 Log your experiments
20:02 Build smaller models
20:14 Change Kaggle Sorting
20:39 Learn from Kaggle
20:49 Make ablation studies
20:57 Check out regularization techniques
21:15 Learning Rate Scheduler
21:39 Don’t overfit by hand
21:56 Create decorrelated validation and test sets
22:35 Create Tensors on device
22:45 Fix all randomness for publication
22:59 Visualize your training
23:18 Compare models with AIC
23:30 Publish your model weights
23:40 Look at your outputs
24:01 Huber loss
24:19 Trust domain scientists
24:50 Don’t believe all old ML wisdom
25:04 Outro
——————————————————————————————————————
👋 Social
💙 Linkedin:
💜 Twitter:
🌍 Main Website:
🎁 Community:
——————————————————————————————————————
📝 Disclaimer
Jesper Dramsch is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to and affiliated sites.
Opinions my own. Not financial advice. Sponsors are acknowledged. For entertainment purposes only.
8 views
7
3
4 weeks ago 02:03:42 1
Мужская водолазка на вязальной машине. Подробный расчет в ДК и вязание
4 weeks ago 00:11:40 1
Earn Over $100 Again and Again with Free Google and AI Tools
4 weeks ago 00:06:45 1
⚡100 МАШИН СПЕЦНАЗА ВЪЕХАЛИ В ГОРОД! В ЧЕЛЯБИНСКЕ БЕСПРЕДЕЛ! НА УЛИЦАХ ПАЛЯТ ШИНЫ!
4 weeks ago 00:20:25 1
The DEADLY self-cleaning litter boxes that have flooded the market
4 weeks ago 01:15:47 1
100 Крутейших и Дорогих Машин Доступных Только Миллиардерам
1 month ago 00:00:00 1
🔴У НАС ХЭЛЛУВИН КАЖДЫЙ ДЕНЬ | Стрим-аукцион
1 month ago 00:17:37 58
Раха Андийский - машина от Хамзата Чимаева. Отказ Хайп Реалити. Уроки дагестанского вождения.
1 month ago 00:18:52 1
10 самых редких и необычных экскаваторов СССР. Эти машины вас удивят!
1 month ago 01:32:14 1
Хватит мазать детей машинным маслом, разбор гипоаллергенных средств🍀