VOS: Learning What You Don’t Know by Virtual Outlier Synthesis (Paper Explained)

#vos #outliers #deeplearning Sponsor: Assembly AI Check them out here: Outliers are data points that are highly unlikely to be seen in the training distribution, and therefore deep neural networks have troubles when dealing with them. Many approaches to detecting outliers at inference time have been proposed, but most of them show limited success. This paper presents Virtual Outlier Synthesis, which is a method that pairs synthetic outliers, forged in the latent space, with an energy-based regularization of the network at training time. The result is a deep network that can reliably detect outlier datapoints during inference with minimal overhead. OUTLINE: 0:00 - Intro 2:00 - Sponsor: Assembly AI (Link below) 4:05 - Paper Overview 6:45 - Where do traditional classifiers fail? 11:00 - How object detectors work 17:00 - What are virtual outliers and how are they created? 24:00 - Is this really an appropriate model for outlier
Back to Top