Как устроена наука в Lambda ВШЭ: Co-research и мотивы Kaggle в машинном обучении

Co-research: методология академических и научных исследований, основанных на данных (data-driven research) Андрей Устюжанин НИУ ВШЭ, МФТИ, CERN Семинар “Как проводить эксперименты в науках о данных?“ 2 декабря 2021 г. Науки о данных и технологии машинного обучения представляют ключевое направление развития современных образовательных программ. С одной стороны, навыки работы с данными помогают серьезно усилить эффективность прикладных проектов, и являются привлекательным направлением с точки зрения карьерного роста. С другой стороны, без серьезной практической составляющей изучение работы методов основанных на данных не дает возможность погрузиться в тонкости и понимание ограничений таких подходов. Лаборатория НИУ ВШЭ Lambda тесно сотрудничает с несколькими международными исследовательскими коллаборациями, такими как LHCb, SHiP, OPERA, MPD@NICA. В своем докладе я расскажу о принципах и методологии, которой руководствуются сотрудники лаборатории, объединяя учебные и исследовательские задачи в рамках практических проектов. Немаловажным фактором является использование современных инструментов поддержки совместной работы, которые позволяют в игровой форме провести студентов через цепочку ключевых шагов исследования, понять принципы оценки границ применимости методов машинного обучения и оценить вклад каждого участника проекта.
Back to Top